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Chernyi [l 1 developed the laws of hypersonic similarity for flows of 
ideal (inviscid) gases around blunted slender bodies. In [ 2 1, similar- 
ity laws were established for hypersonic flows of viscous heat-oonduct- 
ing gases around sharp slendeibodies. Analogous results for this case 
were obtained by Cheng [ 3 1 , and Hayes and Probstein [ 4 1. 1n the pre- 
sent paper, general similarity laws for laminar hypersonic flows around 
blunted slender two-dimensional (v = 0) and axisymmetric (v = 1) bodies 
of viscous heat-conducting gases are developed. The laws of [l-4 1 
follow from the present laws as special limiting cases. One also obtains 
laws of similitude for flows in inviscid high-entropy layers and for 
boundary-layer flows with variable entropy at the outer edge of the 
layer. 

1. ‘Ihe characteristic feature of hypersonic flows around slender 
bodies in viscous heat-conducting gases is the separation of the dis- 
turbed field into two regions in which the governing parameters differ 
by an order of magnitude. ‘Ihe first region consists of the neighborhood 
of the strong oblique shock wave; there the temperature of the gas, which 
is weakly deflected, remains low in comparison with the stagnation 
temperature. 

The second region comprises the high-temperature, or high-entropy, 
low-density layers brought about either by viscous dissipation or by 
compression through a (nearly) normal detached shock wave ahead of the 
blunted nose, or by both mechanisms. 

At high Reynolds nmbers R, = pm U l/p_ , where p, , p_, , U represent the 
density, viscosity and velocity of the free stream, and I the character- 
istic length of the slender body, the inviscid high-entropy region 
arises first. ‘Ibe usual boundary-layer, brought about by the no-slip 
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condition, develops at first within the high-entropy layer, gradually 
fills it and emerges from it only some distance from the nose. This dis- 
tance decreases as the Reynolds number Rd (based on the diameter d of 
the section where blunting stops) decreases. When R decreases further 
(and the Mach number Erd of the free stream increases f the flow between 
the blunted nose and the detached shock wave becomes fully viscous 15 I, 
and the high-entropy layer is viscous throughout. Furthermore, for low 
R, values, viscosity and heat conductivity can influence the motion of 
the gas in the high-entropy layer, which has acquired large vorticity in 
the passage through the curved strong shock, quite apart from the no- 
slip condition 16 1. Under these conditions, the distinction between the 
essentially viscous region induced by the no-slip requirement at the 
wall, and the rest of the high-entropy layer becomes impossible. How- 
ever, high-entropy layers possess many general properties, which allow a 
coaxnon approach to the problem. 

Let xl and rl represent coordinates along and across the axis of the 
body, with the origin at its nose; UU and VU, velocity components in 
this coordinate system; p,U2p and U2i, the pressure and the specific 
enthalpy; a, the inclination of the shock wave; and /3, the relative 
thickness of the body. Then, obviously, we shall have u * 1, p -a2, 

v -a, I” -a, and x Q 1 inside the complete disturbed flow region, and 
u-land i-a2 in the shock layer. We note that in high-entropy layers 
with high temperatures we may have* (1 - u) ti u and the proposition u-1 
will not hold [7 1. 

Henceforth, let us assume that the equation of state of the gas, the 
variation of viscosity ~l,g and of Prandtl number o-in the high-entropy 
regions have the form 

Here the subscript 0 indicates stagnation conditions downstream of a 
normal shock. We obtain estimates for the pressure rise across the high- 
entropy layer from the r-component of the momentum equation and for the 
ratio X between the flux across the high-entropy layer and the flux 
across the full disturbed region from the continuity equation: 

(1.2) 

Here 6 stands for the thickness of the high-entropy layer. In viscous 
high-entropy layers the enthalpy is on the order of stagnation enthalpy 

* TransZator's Note. See second paragraph fn Section 3: Added in proof. 
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even in presence of high cooling at the wall. In the inviscid case let 
us introduce an effective adiabatic exponent yO, useful for the assess- 
ment of magnitudes at high temperatures (y,, takes values from 1.1 to 1.3 
for dissociated air). Then in the special cases of the viscous and of 
the inviscid high-entropy layers we obtain*, respectively 

1 - 10, p-poa2; 
(-~o-l)/Yo 

iN i, ‘-6%‘ 
t ’ 

WY0 PO, ) F - PO" (4.3) 

From the first equation (1.2) and from (1.3), it follows that for 
a << 1 the pressure may be considered constant across the hip-entropy 
layer with an accuracy no less than pga2/Y0. From the second equation 
(1.2), when a << 1, we have X << 1, and consequently a % M” ’ -t p + S/l. 
Therefore, most of the mass of the disturbed gas passes outside of the 
high entropy layer. It is clear that a is small when the magnitudes M-l, 
/3 and 6/l are small, 

The order of magnitude of the thickness of the fully viscous high- 
entropy layer is estimated by standard boundary-layer methods. ‘lhis 
thickness has a maximal order of magnitude when a *S/l. In such a case 

‘Ihe thickness of the fully inviscid high-entropy layer is determined 
by the constancy of mass flux across it. This flux has the order of 
magnitude #p,iJd(l+V), so that we have, for the same case, a *6/l 

(j &hd’+” 

n20 = TO [2 + To (1 + Y)F 

Hence, for M- ’ and /3 small, the order of a will be small if 

2. Let us assume that the adiabatic exponent y of the gas in the 
shock layer is the same as in the undisturbed free stream. Let us intro- 
duce the quantities 

Here r. = To(x) is the equation of the shock surface. Then the equa- 
tions of motion in the shock layer and the various ratios across the 

* ltn many cases the order of magnitudes in the high-entropy layer is 
the same for the viscous and inviscid eases; the SmSlheSS of fyo- 11 

allows the assessment a 2(YO- ‘)lrO cv 1, unless a is infinitesimally 

small. 
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shock take on the respective forms 

1 --+-LL T-1 
--r+1 P 7, + 1 Yo’28,2 

(Oa = Ma) (2.2) 

lhe general case of motion of the gas in the high-entropy region 
calls for the usage of the Navier-Stokes equations. Should the role of 
viscosity turn out to be unessential, the viscous terms will automatic- 
ally cancel in the equations. However, for small a, with accuracy up to 
o2, a group of the viscous terms in these equations can be neglected in 
the usual manner. With the pressure across the high-entropy layer con- 
stant, the equations of motion in this layer can then be reduced to the 
customary boundary-layer equations: 

(2.3) 

yv;(u$+v+c 
/ 

#&Po 
PO ’ 

At the body we impose the requirements 

u=v=o, i = i, (x) or 
i3i 

- = !7 (2) 
3Y (2.4) 

Since in the disturbed regions y % 1 it is permissible to drop the 
last term in the equation for the solid boundary r = p rv (x) + d/2Z, 
when at sufficiently large distance from the nose, and to satisfy the 
conditions (2.4 

In the shock 
i%i, 0 2(Yo- 1 

on the surface 

r = bra (5) (r (0) = 0) for 

but according to 
in the high-entropy layer. 

d<2al (2.5) 

(1.3) simultaneously 
Therefore at the edge of 

the high-entropy layer, r = rg(z), one can take, as in [ 2 1 

u-l - 7 i - 0 - , v+ = v_ for y=ys = G (2.6) 

Here V and V_ represent the limiting values of the function V as the 
edge yg(x f of the high-entropy layer is approached from within and from 
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without , respectively. 

In the case of the fully viscous high-entropy layer its boundary with 
the shock layer is rather well defined [ 2,41. In the inviscid case this 
boundary requires a somewhat more arbitrary definition; it can be identi- 
fied with a streamline issuing from an arbitrary point of the transition 
section of the shock wave, which divides the regions with a Q 1 from 
those with a << 1. Clearly, this transition section cannot extend far 
and is limited to the neighborhood of the blunted nose so that for bodies 
with d/l << 1 it can be assumed that the separation of the shock wave 
from the high-entropy layer takes place at the initial station x = 0. 
l’he whole disturbed region near x = 0 should be identified with the high- 
entropy layer, even though conditions 6 << 1 and X << 1 will not be 
satisfied here and Equations (2.3) may not be applicable. 

3. In taking account of the small but finite blunt nose, we shall 
follow Chernyi 11 1 in the supposition that adequate solutions can be 
obtained by satisfying the conservation laws near x = 0 in their integral 
formulation and that the influence of the specific initial geometry on 
the important features of the flow damps out some distance from the nose. 
‘lhe parameters characterizing the role of the init factors are then 
to be determined from the integral form of the equations. For the high- 
entropy layer these equations read 

us 

al** = +a+ \ Wdy-!P (ys"ys'-- yw yw')dx ,-$f(y\,f,$ dx 
d 

h b 0 v= v?J 

+I= La + $(yv$-$!,=, dx 

0 w 

&** - ‘w$“, 6,-g, P 
Y 

yw = Trw, i, = i + -$ + $ (3.1) 

ps rs 

(d**)l+” = 
s 

pw (1 - u) dr, @S” = 
s 

SUP (i, - i.J dr 

1‘W rW 

Here a** and 16 represent the momentum and the stagnation-enthalpy 
thickness of the boundary-layer theory. In the derivation of the first 

equation (3.1) we neglected a small quantity (of order a2) correspond- 
ing to the momentum lost in the shock layer of the gas which enters the 
high-entropy layer. ‘lhe constants K, and L, are determined from conserv- 
ation of momentum and energy in the region D, which is bounded by the 
station x = 0 and by the front part of the shock wave. ‘Ihey are ex- 
pressible in the form 
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K, = + C,a-(3S4 ($) 

1+v 
, L, = +-(3+., ($) 

I+” 

Cx = cx + c,, 
= QGW1+” 

(3.2) 
c 

4 
3t”p,U3 

Here C,, cu and cT stand for the coefficients of the complete drag, 
the wave drag and the friction drag of the nose, respectively. Q is the 
amount of heat lost by the gas per unit time in the region D, and Cq the 
mean Stanton number for the nose. In the preceding we neglected the 
pressure in the free stream in comparison with the pressure over the 
nose. 

Let 8, and u,,U designate the viscous boundary-layer thickness over 
the blunted region and a characteristic gas speed at its outer edge, 
respectively, and 8 a characteristic angle between the free-stream direc- 
tion and the blunted surface. Then with o - 1 we shall obtain 

-- 

60 

d 
-m-0 c, - uo cqcos 6, 

POUOA 60 c, - k% = --yj- x (3.3) 

Should all the flow between the blunted surface and the shock wave be 
viscous, i.e. 8, .* A, then u,U would correspond to the tangential com- 
ponent of the velocity behind the shock wave at a point which is on the 
order of d/2 away from the axis. ‘Ihe quantity A has then the same order 
of magnitude as in the inviscid case* 15 1. In agreement with Serbin 
[ 8 1 , for pa >> 1 we shall then have**, depending on the magnitude of 6 

uo- 1, POA - 1, (~0 / Rd)“2 - kih for cos 6 - 1 

ugh k’:z , A-k, V2 (p. I R,)‘12 - k’14 for cos 6 (< 1 (3.4) 

In such a case then C Q 1, and when cos 9 Q 1, the quantity c7 w 1, 
i.e. the viscous drag of’the nose can be of the same order as the wave 
drag when 8, * A. 

lhe relative contributions of the blunted and lateral surfaces to 
heat transfer and frictional drag can be characterized by the parameters 
oq and 07, which according to (1.4) and (3.3) have the order 

l 

l * 

At least as long as the thickness of the shock itself remains 
negligibly small in comparison with A. 

The case cos fi * 1 corresponds to sphere-like bodies and the case 
co8 6 << 1 to disk-like bodies with the flattened face perpendicular 
to free-stream direction. 
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u”1,‘2 d 
%--yy 

(T)‘yl -1 I!)-‘, 

‘lhe relative contributions to the drag 
due to friction over the lateral surfaces 
meter 

0, - U” W&OS 6 (3.5) 

due to the blunted nose and 
are characterized by the para- 

+ JL>-‘ 

‘Ihe motion of the gas in the high-entropy region is fully described 
by Equations (2.3) or (3.1) so that the momentum balance in the direction 
normal to the body axis appears unessential. ‘lhe ratio between the 
momenta normal to the axis integrated over the high-energy layer and 
over the shock layer, respectively, is of the same order as the ratio of 
the corresponding fluxes, h << 1. Consequently, if the impulse in that 
direction imparted to the gas by the blunted region* (designated by 

I(1/2 d) ‘+Vp,U per unit width in a direction normal to the free-stream 
direction, or per unit angle between meridional planes in the axisym- 
metric case) has an influence on the motion in the large, then this im- 
pulse must enter into the corresponding integral equation for the shock 
layer, namely 

‘Ihe parameters K, and J a. are analogous to those used by Chernyi [l 1. 

In this manner, the influence of viscosity does not introduce new 
(relative to the inviscid case) parameters characterizing the blunting. 
‘Ihe heat transfer between the nose surface and the stream brings about a 
new determining parameter L,. When the nose is insulated L, reduces to 

zero, if in the region D other sources or sinks of energy are absent 
(radiation from the gas cap, transpiration cooling, etc.). 

4. lbe derived equations and the boundary conditions contain the para- 
meters 

The parameter p/a is determined in the process of solution and 
appears as a function of parameters (4.1), which can therefore be re- 
duced to 

l Tronslotor’s Note. See pp. 205 and 219 of English edition of [ 1 I. 
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i 

G, 
0 = .lly, K = _1__. r___ (w&j 

2” pa+v 
lS”, 

Under the stipulated assumptions, the parameters (4.2) form the com- 
plete system of similarity parameters for hypersonic flows of a viscous 
heat-conducting gas around bodies which have the same shape rw(x), obey 
the ssme heat-transfer conditions (2.4), but are blunted in different 
manner. 

For bodies with negligibly small blunting, i.e. for K, J L, = J& = 0, 
the parameters K, t and J fall out of the system (4.2). In that case, 
the conditions of similitude (4.2) differ from those of 12 I only be- 
cause of the more general specification of the gas (1.11, which leads to 
a modification of the parameter x and to the appearance of the new para- 
meter k (whereas in I2 I, k = k(y)). 

The system (4.1) contains three parameters K,, La and J,, or the 
equivalent group K,, Ia/C, and CII/‘Cs, which characterize the influence 
of the nose blunting, ‘lhe quantities cx and I depend on the parameter k 
and on the form of the blunting, while c7 and C depend also on the para- 
meter (/.J,/% ) ‘1’ One can therefore conclude th!t when the first five . 
parameters p’ 4.1) or (4.2) are kept constant, there are essentially no 
degrees of freedom left, except for the form of the blunting, with which 
to satisfy the remaining criteria of similitude, Ia/Cz = const and 
CdC, = const. 

However, if the class of admissible cases is restricted by the re- 
quirement 

K clca -77% 
(m > 0) (4 *3) 

and in the viscous axisyuzaetric problem by the requirement an -pyd/l, 
then, with C, Q 1, we shall have* 

J, - al-m< 1, wq c aml+W-nt: < 1 for n<f, 
8 - 3m 
->n>1 4 

( 
n 

1 
= 1--m+(3-2m)v 

) 2(f+y) 

l The condition (4.3), I& 4 a- *, automatically leads to the inequality 
d,al < ,(z-s)/(l+v) << 1. so that, generally sneaking, (4.3) repre- 
sents a more stringent constraint on the realm of applicability of 

the similftude than the earlier adopted condition d << al. 
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Therefore, J and L can be excluded from the system of similarity 
criteria (4.2). We note that the remaining parameters essentially do not 
contain any which were not introduced in the earlier studies [1,2 ] of 
special limiting cases of the law of similitude. 

From general expressions for the heat-transfer coefficient and for 
the friction coefficient it follows easily that when the similarity con- 
ditions are satisfied, the quantities cn/03 and c /cz3 remain invariant. 
Here cQ and cf designate local heat flux and loca surface shear non- i 
dimensionalized with p-U3 and p,U3, respectively. 

5. ‘Ihe scheme of satisfying equations and boundary conditions in the 
nose region of a viscous high-entropy layer in an integrated form can be 
justified on the basis of the general behavior of viscous and heat-con- 
ducting flows. Viscosity and heat-conduction smooth out differences in- 
curred in the initial distribution of the parameters in the high-entropy 
layer so that some distance downstream the decisive role will be played 
by the integrated characteristics of the initial conditions. At high 
Reynolds numbers, when the high-entropy layer is partly nonviscous, the 
differential distribution of entropy across its streamlines is preserved 
outside the boundary layer for longer distances from the nose (until the 
boundary layer fills the high-entropy layer entirely). Also, the condi- 
tions i 5 0 and u = 1 are no longer satisfied at the edge of the bound- 
ary layer. In fact, the characteristics of the boundary layer depend on 
the distribution of entropy along its outer edge. 

In this connection, let us examine more closely the similarity condi- 
tions for the distribution of parameters in a partly or fully inviscid 
high-entropy layer. Ultimately, for cases of similitude, we expect co- 
incidence of the profiles i(r, y) and u(x, y). In the boundary layer, the 
influence of conditions near x = 0 can clearly be disregarded. Then it 

follows from (2.3) that similitude in the boundary layer takes place 
when the same functions i = i,(x) and u = u,(x) are prescribed at its 
outside edge p y,(n). In the inviscid region, where the flow is isen- 
tropic, the functions i(x, y) and u = (1 - 2i)‘12 will be identical for 

the cases of similitude if the entropy and pressure fields s(x, y) and 

p(x, y) are the same, respectively. In general, the coincidence of the 
pressure fields I)(x, y) will not occur, but that can be disregarded be- 
cause of the weak dependence of enthalpy on pressure. In fact, we have 
conditions 

i z rjz p(Y*-l)/Ya(& e)‘J/Yo 

where c is the angle of the shock wave at the point of intersection with 
a given streamline. Since the difference yu - 1 is small, especially for 
high-temperature air, the function i depends on p very weakly and for 
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yo + 1 becomes altogether independent. Thus, if we accept the condition 

yo - 1 << 1 as an additional constraint, we can assert that the enthalpy 
and the velocity in the high-entropy layer depend only on the entropy*. 
Henceforth, we shall take s = sin* E . 

Let ~-p,U(1/2 d) l+V designate the mass flux between the body and the 
given point of interest. lhen 

I.” 

‘p+=P U 
cc kh’ @Y'dY (5.1) $ s 

If, for fixed values of 
LM 

the similitude parameters, 
the functions u(x, y) and 02 

i(r, y) should be universal 
functions of its variables, a 
then x(x, y) and, according 

f? 4 6 8 

to (5.1)) 4(x, y) would also Fig. 1. 
be universal function. How- 
ever, for different nose shapes, the functions s($) = s(C$) will gener- 
ally be different. Hence, if s-(x, y) and +(x, y) in the &viscid part 
the high-entropy layer are to be universal, then we must require that 
for the cases of similitude, the functions s(+) be identical. 

of 

Conversely, if for cases of similitude in the inviscid part of a 
high-entropy layer the functions s($) are identical (and consequently 
also the functions i(+) and u(qb), then clearly the functions i(x, 4) and 
u(x, 4) in the boundary layers will be identical and so will be the 
edges* * of the boundary layers $= 4sl(x). Consequently, in accordance 
with (5.1), the functions i(x, y) and u(z, y) in the high-entropy layer 
will be universal functions of its variables for all the cases of 

l 

l * 

More exactly, we should require Qz~/~~)*(~O- l)‘yO = 1 if there is 
to be similitude in the high-entropy layer for different cases a = a1 
and a = a*. The condition y. - 1 << 1 will not be necessary for 
a1 = a2 (for instance for flows around identical bodies which differ 
only in nose shape). 

This edge is determined from the condition of smoothness of the pro- 
files i and u. 
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similitude. 

In this manner, the developed law of similitude remains valid in the 
complete disturbed region of flow (with the possible exception of a very 
thin region between the high-entropy layer and the shock layer) if y0 
1 << 1 and the function ~(4) is identical for the cases of similitude. 

For high Reynolds numbers the quantity C, and the shape of the shock 
wave depend only on the parameter k, because when the blunted shape is 
invariant the functions s($) will be identical for the cases of simili- 
tude. We can suppose that for equal values of k, the functions sfqf”) for 
different blunted noses (in the vicinity of the detached shock wave of 
for 4 ~11 will not materially differ among themselves. Justification 
for the supposition can be found in Fig. 1, which displays the values of 

r s(# 1 lh’ for different blunt bodies at M = 6, y = 1.4. The experimental 
values were collected from different sources while the theoretical values 
correspond to a sphere (solid line) and to a cone-cylinder (half-angle 
of SO’-dotted line). It can be seen that the functional values are 
sufficiently close to each other in spite of the large differences in 
the shapes of the bodies. This universal character of the function s(4) 
should be, of course, verified for smaller values of k before under- 
taking further deductions concerning the limits of applicability of the 
laws of similitude*. 

We can expect that any differences between the functions s(+) and any 

0.8 

0.4 
Y 8 b2 

Fig. 2. 

able for qualitative deductions. Setting 
of s*, pp= const, and u = 1, we have 

dependence of i on the pres- 
sure will not particularly 
influence the similitude of 
the essential features of the 
boundary layer (c , cf, dis- 
placement thicknejs S *). Of 
this we may easily be con- 
vinced if we make the assump- 
tion that such features de- 
pend only on local condi- 
tions, which is fully accept- 

fl = fz and, for the evaluation 

* For k + 0, the front part of the shock wave follows the shape of the 
body. However, the difference between the actual shape of the shock 
wave and this limiting shape disappears only as kli2 (especially for 
bodies with cos C$ << 1) and can therefore be substantial for the 
regime k >0.05 of practical interest. Thus, it is rather likely that 

the function s(#) will be nearly universal for these conditions as 
well as for r/e 1. 
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(5.2) 

Here A,, A, and A, are coefficients*. It is easy to see that E&pres- 
sions (5.2) depend relatively weakly on i, when i,fi, is not too close 
to unity, so that differences in s(& and p indeed make little imprint 
on the features of the boundary layer. We note that the function i, de- 
creases as ya grows, and thus, according to (5.2), the similitude of the 
boundary-layer characteristics depends less and less on (yO - 1) and on 
the universality of the function s(#). 

As to the effect of differences in the functions ~(4) on the pressure 

distributions along the body in the inviscid high-entropy layer, it will 
be relatively small. In fact, Expression (5.1) for the thickness of the 
high-entropy layer contains the function s(ss> only under the integral 
sign, a fact which must reduce the net influence of the departures of 
s(& from the universal values. 

We have ample reasons that because of the effects of viscosity and 
heat-conductivity, which smooth out the differences in the initial condi- 
tions at the nose, and apparently because of the increase in the thin- 
ness of the intermediate zone between the layers, the accuracy of the 
law of similitude will be greater in the case of the viscous high-entropy 
layer. In this connection, some idea of the accuracy of the law of 
similitude can be obtained from Fig. 2, which displays various pressure 
distributions, obtained by exact numerical computations for an inviscid 
gas with y =y,= 1.4andM=m. The solid curves correspond to differ- 
ent spherically blunted cones of semiangles & and the dotted curve to a 
cone of semiangle a0 = 10’ blunted by another cone of semiangle 50’. In 
these cases, there is not characteristic length I and the distributions 

PO(<) = p//302 f or all cones should coincide as functions of the abscissa 

4 = (23/Cz 1 “‘2&,2Z/d, tl 1. ‘RI e e 1 1 e curves are indeed sufficient- xh’b’t d 
ly contiguous even though the magnitude of the pressures and of the 
domain of influence of the nose in the cases & = 5 and &, = f5* differ 
ninefold. Some of the differences between the curves for different #So 

l with the help of these coefficients we could account for the *pre- 
history* of the boundary layer, i.e. the distribution of the function 
P(X) on the surface of the body, the shape of the body. etc. 
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can evidently be accounted for by the deviation from similitude in the 
high-entropy layer caused by the insufficient smallness of (yO - 1). 
Here the thickness 6 of the high-entro y layer decreases more slowly as 
a grows then for yO = 1, since 6 = p- P “)‘o, which thus leads to an in- 
crease in P*(;r). 

l’he author thanks V.G. Pavlov for his great help in computations. 

Added in proof. Recently, [ 9 1 was published, where, for a perfect 
gas, u = con&, and p Q t ‘n, essentially the same similarity criteria 
were obtained as in Section 4. One difference is that instead of the 
parameters K, x and 8, the authors used combinations thereof. Also, the 
parameters L and X were not introduced and the conditions under which 
they can be neglected were not investigated. 

In order to avoid difficulties connected with the study of the flow 
in the high-entropy layer, and to reduce the derivation of the law of 
similitude to collation and synthesis of the previously known results 
[l-4 I, the authors of [9 1 assume that for an inviscid high-entropy 
layer u EI 1, However, this condition is not satisfied in many cases 
(e.g. on the surface of a blunted wedge with p = 10° where the magnitude 
II = 0.5 to 0.8 for y. = 1.1 to 1.4). 

Furthermore, the condition u = 1 does not erase the dependence upon 

the entropy distribution of the thickness of the high-entropy layer and 
consequently of the magnitude of P and V in the whole disturbed region. 
(The exceptional case [ 9 I of y = y,, -t 1 is not consistent with the 
assumption a CJ 1, inasmuch as u -, 0 as y. -, 1. ) 

In the present paper it is shown that compliance with the criteria of 
similitude, developed in Section 4 and in [ 9 1, is insufficient for 
similitude in the inviscid case, for which the universality of the 
entropy distribution s(#l is mandatory. In the framework of the blast- 
wave analogy we have z = const +- ’ for flows around blunt cylinders or 

plates. Since this analogy is applicable only at large distances from 
the nose, the fact of the universality of the function s@) in the 
neighborhood of the nose (Fig. 1) appears altogether remarkable. 
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